Taken from Khelb's Programmation des machines à états, Chapter 4, Le langage de programmation. The original document (in French) can be found at:

http://perso.wanadoo.fr/dubois.pascal/

Translated from French by Malleus.

Written in Word by Skipper 2001.

 STATE MACHINES PROGRAMMING*

1: The Programming language

1.1 General structure

The programming language used to build state machines is a block structure language. Like C or C++, spacing characters are space, tab and return. You can write comments to the code including them into /* and */. A set of predefined commands represent the keywords of the language.

Each state machine is fuly decribed by a set of commands built into a

STATE_MACHINE {} block.

That block containes two sections:

* one section containing informations only for QUEDITOR:

* one code section, that decribes the state machine's logic. That section delimited by the CODE [] command, is used directly by the game itself.

QUEDITOR does not analize in any way that code.

1.2 QUEDITOR informations

1.2.1 State machine's name

QUEDITOR uses that name in the state machine's selection list (Create new machine window). The declaration is made using the KEY {<name>} instruction.

1.2.2 Short decription

QUEDITOR uses that information in the Create new machine and Machine properties... dialogue windows. The declaration of the decription is made using the COMMENT [<desciption>] instruction.

1.2.3 Parameters

Those parameters can be modified by the Machine properties... dialogue window. Each parameter is decribed by a PARAM {} block, containing the following commands:

* an id-number key (KEY {} command) that can be referenced from within the code section (syntax %<num>). The id-number keys 0 is predefined by QUEDITOR and designs the unique name of the machine's instance (key field of Create new machine window).

* A parameter's description (command COMMENT [<decription>]).

*A type (command TYPE <type>), that can be:

- ALPHA means a character's string.

- FRAME means a graphic object (one of the possible graphic representations of the machine).

- INT means an integer value.

- LIST means a list of values. If the LIST command is used, each value the parameter could have is declared by a LIST [<decription> = <value>] command. When a LIST command is used, the %<num> reference assumes the value of <value>.

- MONSTER means a monster.

- OBJECT means an object.

- SKELFILE means the squelette file of a 3D object. A squelette file contains the graphic representation (SKELNAME) and the animations

(SKELANIM) of a graphic object.

- SKELNAME means the graphic representation extracted by a squelette file. QUEDITOR gives to the SKELFILE parameter the same value as SKELNAME.

- SOUND means a sound.

- TEXT means a text.

* A default value (DEFAULT {<value>} command). This parameter is optional, but it's recomanded for a LIST type, where <value> has to be a valid <description>.

* Some complementary informations, depending on the parameter.

- DISPLAY {}: used with a FRAME or SKELNAME type, defines the object used by QUEDITOR to represent this machine, both in hierarchy and 3D view. Each state machine must have a DISPLAY {} command in order to use it. I suggest you to not use more than one DISPLAY {} command for each machine: once I had two DISPLAY {} commands in the same machine and it acted strange, esp. when saving and loading quest with QUEDITOR.

- IN {}: used with an OBJECT or MONSTER type, allows to view the objects and/or the monsters used by the machine in the hierarchy view.

- LIST [<description> = <value>]: used with a LIST type describes one of the admissible values to be used by the parameter.

- OUT {}: used with an OBJECT or MONSTER type, allows to view the object and/or the monster created by the machine in the hierarchy view.

1.3 CODE SECTION

Note: each state machine has an action zone of 30x30 squares. The machine is activated (it executes its code) when a character enters this zone, and is deactivated (it stops executing its code) when all characters have left that zone.

1.3.1 General structure

A state machine's code section contains a unique TRAP {} block, which contains:

* A standard KEY {%0} command, that allows DarkStone to identify precisly that state machine. Remember that %0 id-number key is predefined by QUEDITOR and defines the unique name for that particular machine's instance (key field of Create new machine window).

* FLAGS {<flags>} command, that defines the machine's properties.

<flags> is a list of keywords spaced by the " | " character, in any order.

The keywords are:

- ACTIVE: makes the machine usable in an interactive way. The characters can't perform any interactive action on a machine with no ACTIVE flag. A machine without this flag makes the mouse pointer not to turn red when it passes over it.

Note: a machine becomes automatically inactive once it has passed every possible state: in order to make a permanent machine (ie. a machine that keeps working, and is not automatically deactivated) the machine must have a state that can't be reached (ie. a state which is never addressed by any GOTO {} or JUMP {} instruction).

- ATTACK: the characters approach the machine and attack it when you click on it.

- CHANGELEVEL: means that the machine implies a change of dungeon's

 level.

- CLEARMOUSE: the machine deletes the object on the mouse when it performs a transition based on the object's detection (cfr. Section 1.3.2).

- DROP: allows the drop of an object on the machine's graphic representation.

Note: it's still possible to drop an object on a machine with no graphic representation, even if it has no DROP flag.

- HANDLE: ???

- LIGHT, LIGHTBUFFER: when both used, they cause the machine to light up at the mouse passage.

- NEEDPOS: if used, when you click on the machine, the characters approach it from the front side; otherwise they'd approach it from any side.

- NOSHADOW: suppress the shadow of animated frames (see SKELNAME and SKELANIM, Section 1.3.4).

- POSEND: prevents the selection of the machine location as a displacement target (especially useful for doors, not to get "stucked" in the graphics).

- SIDEDETECT: ???

- STAIR_DOWN: the machine causes a forward transition to a lower dungeon (higher difficulty). Each dungeon level should have one and only one machine with this flag.

- STAIR_UP: the machine causes a backward transition to a higher dungeon (lower difficulty). Each dungeon level should have one and only one machine with this flag. You have to make these machines only if you build an entire level; you can't build a room in a dungeon with a stair machine - ie. you have to let the QUEDITOR'S random engine to do that work.

- TRANSMIT: the machine can send and receive signals.

* Some state blocks, describing how the machine works in each state.

The first state indicates the starting state of the machine. Common commands to the whole set of states, or independent from any particular state, can be placed before the declaration of the first state.

Note: The front of a 3D frame should be checked for each frame: for example, the front side of the demon's statue is in fact its back side.

1.3.2 State's description (STATE {} block)

Each state contains:

* a name, unique for each state in the same machine declared with the KEY {<statename>} command. That name is used in the states'transition (GOTO {<statename>} and JUMP {<statename>} commands).

* An instruction set executed each time the machine enters into that state.

These instructions are decribed in Section 1.3.4.

Note: the instructions are executed before entering into the MULTI {} block (see below).

* A state transition, event-based, logic:

- events that cause a state transition are decribed into a MULTI {} block.

- each event is decribed into a CONDITION {} block, containing two commands. The former decribed the event that causes the transition, the latter is a GOTO {<name of the state>} command that indicates the machine's next state. The events that could trigger a transition are decribed in Section 1.3.3.

- the first event (in the list order) that occours (evalued as true) triggers the transition to the state decribed by the corresponding GOTO {<name of the state>} command. If no transition is possible, the machine waits in the current state.

1.3.3 Events

The events that can be used into a CONDITION {} block to trigger a transition are:

* CLICK: true if the player left-clicks on (the graphic representation of) the machine.

Note: if the machine has the ATTACK flag set, the characters would "attack" the machine - ie. they would swing their weapon onto the machine.

* CLOSEPANEL {}: true if the player closes a text panel, previously opend with the TEXTPANEL {<text>} command.

* COLLID {<collision>}: true if a character, a monster or an object take up (<collision> = 1) the machine's place; or anything does not take up (>collision> = 0) the machine's place.

Note: hereafter, clicking on, touching, attacking, etc. the state machine has to be intended as clicking on, touching, attacking, etc. the machine's graphic representation.

*COLLODEX {<collision>, <distance>, <detection>}: true if the parameter indicated <detection> is placed (<collision> = 1) or is not placed (<collision> = 0) at less than <distance> from the machine's place.

The <detection> parameter can be one of these values:

1: a character;

2: an object;

3: a character or an object;

4: a monster;

5: a character or a monster;

6: an object or a monster;

7: a character, an object or a monster.

Note: COLLID {<collision>} and COLLIDEX {<collision>}, 1, 7) are just the same.

* ENDANIM {}: true when the animation caused by a SKELANIM instruction ends.

* MONSTERCOUNT {<monster>, <num>}: true if the number of monsters of type <monster> into the current dungeon/land level is strictly lower than >num>.

* MSG {<#msg>}: true if the machine recives the signal number <#msg>.

* NOPANEL {}: always true. It turns false if a text panel (TEXTPANEL {<text>} command) is opened.

* OBJECT {<object>}: true if the object indicated by <object> is on the mouse and the player left-clicks on the machine.

Note (1): If you click on the machine with no object, or with a wrong object, the FAIL {<text>} or the FAILPANEL {<text>} instruction, which follow the MULTI {} block, are executed.

Note (2): In order to make the machine perform another action, instead of simply displaying a text, you have to insert a CLICK {} command after the OBJECT {<object>} command in the CONDITION {} block.

* OBJECTHAND {<object>}: true if the characters holds the object <object> in the inventory when the player left-clicks on the machine.

* OBJECTINVENT {<object>}: true if the character holds the object <object> in the inventory when the player left-clicks on the machine.

* OBJECTWEAR {<object>}: true if the character wears the object <object> when the player left-clicks on the machine.

* PLAYEROBJECT {<object>, <location>}: true if the character holds the object <object> on the location defined by <location> when the player left-clicks on the machine. The <location> parameter can be one of these values:

0: on the mouse;

1: on the hand(s);

2: in the equipment;

3: in the inventory.

* PROJECTILEHIT {}: true if a projectile hits the machine

* SENSEOBJ {<object>}: true if the object <object> is placed on the machine.

* SENSEOBJMAGIC {<object>}: true if the object placed on the machine belongs to the right object's class. The defined object's classes

are defined in Table A1.

* SENSEWEAR {<object>, <distance>}: true if the character holds the object <object> in the equipment while it's at less than <distance> from the machine.

* TIMER {<delay>}: true when <delay> milliseconds are passed.

Note: TIMER {0} is always true and causes a state transition instantly.

* VEQ {<vobject>, <value>}: true if the virtual object <vobject> is equal to <value>.

* VGE {<vobject>, <value>}: true if thr virtual object <vobject> is greater or equal to <value>.

* VGT {<vobject>, <value>}: true if the virtual object <vobject> is strictly greater than <value>.

* VLE {<vobject>, <value>}: true if the virtual object <vobject> is less or equal to <value>.

* VLT {<vobject>, <value>}: true if the virtual object <vobject> is less than <value>.

*VNE {<vobject>, <value>}: true if the virtual object <vobject> is not equal to <value>.

1.3.4 Instructions

The instructions that can be used in the CODE [] block are:

* ACTION {}: declares the execution of the instructions used inside that block. The available actions are:

- CAMERAFROM, CAMERATO and CAMERATIME: change the camera position. These instructions can't be used in the quests made with QUEDITOR.

- CHARGECRISTAL {}: charges the Time Orb with a single charge.

- EFFECT {<effect>}: displays the visual effect decribed by <effect>.

See Table A.2 for an effects'list and explanation.

- FMV {<video>}: plays the video sequence indicated by <video>.

The video sequence has to be placed into the darkstone/mdata folder.

The video format should be:

* Audio: PCM, 22,050 Hz, 16 bit, Stereo

* Video: 352 x 232, 24 bit, 25.000 frames/sec, Indeo video 5

- HIT {<damage>}: inflicts up to <damage> damage points to any creature on the machine.

- HITEX {<damage>, <distance>}: inflicts up to <damage> damage points to any creature which is at less than <distance> from the machine.

- MONSTER {<monster>}: generates the <monster> monster.

- MSG {<#msg>}: sends the message number <#msg> to all linked machines.

- OBJECT {<object>}: creates and places the <object> object on the ground.

- OBJECTMOUSE {<object>}: creates and places the <object> object on the mouse.

- PLAYSONG {<numsong>}: plays the sound sequence number <numsong>. Example: PLAYSONG {<26>} plays Audren's song.

- PROJECTILE {}: that block defines the behaviour of a projectile launched by the machine. The instructions are:

* KEY {<type>}: type of the projectile launched. See Table A.3 for a projectile types'list and explanation.

* DAMAGEMIN {<damage>}: minimum number of damage points that the projectile inflicts.

* DAMAGEMAX {<damage>}: maximum number of damage points that the projectile inflicts

* ROTATION {<val>}: projectile's direction:

0: towards north;

1: towards east;

2: towards south;

3: towards west.

Note: QUEDITOR default orintation looks towards south. I've found out it's easier to build launchers in a different way:

- use a frame, like the "crossbow" one, for the machine;

- set the ROTATION value to 2: this way the crossbow fires from the front side;

- rotate the crossbow (ie. rotate the frame in 3D view) instead of changing the ROTATION value.

* YOFFSET {<val>}: hight of the projectile from the ground (-140 < <val> < 140; where -140: ground height; 0: middle height level: 140: higher height).

- REMOVEOBJECT {<vobject>}: deletes the virtual object <vobject>.

- REMOVEOBJECTMOUSE {<object>}: deletes the object <vobject> from the mouse.

- SETLOADING {<sequence>}: defines the next loading sequence to be used. <sequence> can be one of the following:

0: stairs;

1: woods;

4: well;

6: ladder.

Direction (up/down) given by a STAIR_DOWN or STAIR_UP flag.

- SOUND {<sound>}: plays the sound decribed by <sound>.

- TELEPORT2ND {}: teleports the AI controlled character near the active character (solo mode).

- VADD {<vobject>, <val>}: adds the value <val> to the virtual object <vobject>.

- VSET {<vobject, <val>}: sets the value <val> to the virtual object <vobject>.

* CHANGELEVEL {0}: changes level, playing the selected video sequence in function of SETLOADING, STAIR_DOWN and STAIR_UP.

The new level is automatically determined.

* CLEARCOLLID {<collision>}: removes all collisions on the machine.

If <collosion> = 0, then no collision is removed.

Note by Khelb: You can specify a value greater than 1 in CLEARCOLLID, SETCOLLID and SETLOWCOLLID. This value is the size of the collision area. You have to be careful with that, since I noticed that in many cases, machines placed under other machines'collisions are not executing their code anymore.

* FRAME {<frame>}: displays the graphic 3D frame for the machine, using the <frame> parameter.

* JUMP {<statename>}: causes a transition towards the <statename> state of the machine.

* MSG {<#msg>}: sends the message number <#msg> to all linked machines.

* SETCOLLID {<collision>}: sets collisions on the machine. If <collision> = 0, then no collision is placed.

* SETLOWCOLLID {<collision>}: sets low collisions on the machine. If <collision> = 0, then no collision is placed.

* SKELANIM {<animation>}: causes the animation of the machine (esp. npc). <animation> is the animation model, depending on the graphic representation considered (for npc. valid values are static and attack1).

* SKELFILE {<file>}: squelette file containing the graphic representation for the machine.

* SKELNAME {<model>}: description model of the graphic representation for the machine (linked to SKELFILE).

* TEXT {<text zone>}: displays a text on the bottom of the screen (above the status bar). <text zone> is declared by a set of couple: <language code> {<text>}, where <language code> can be:

0: French;

1: English;

2: German;

3: Spanish;

4: Sweden;

5: Italian;

6: Other.

and <text> the text displayed.

Note: QUEDITOR automatically formats text zones when you use a TEXT variable. The syntax is then TEXT {%<num>}.

* TEXTPANEL {<text zone>}: displays a text on a text panel (cfr. TEXT).

A TABLES

A.1 Defined objects'classes

Object classes used in the SENSEOBJMAGIC {<object>} command (see 1.3.3).

 Table A.1: Defined objects'classes

 __

 __

 AMULET----Amulet

 ARMOR or ARMOUR----Armour

 AXE----Axe

 BOW----Bow

 CLUB----Club

 CRISTAL----Crystal

 DAGGER----Dagger or throwing dagger

 ELEXIR_DEXTERITY----Dexterity potion

 ELIXIR_MAGIC----Magic potion

 ELIXIR_STRENGHT----Strenght potion

 ELIXIR_VITALITY----Vitality potion

 FOOD----Food

 HAMMER----Hammer

 HELM----Helm

 MACE----Mace

 PARCHEMIN----Scroll

 POTION_ANTIPOISON----Antidote potion

 POTION_HEALING----Healing potion

 POTION_MANA----Mana potion

 POTION_POISON----Poison potion

 QUEST----Quest object (weapon, armour, etc.. exept potions, scrolls, rings, amulets)

 RING----Ring

 SHIELD----Shield

 STAFF----Staff

 SWORD----Sword

 TORCH----Torch

 WEAPON----Weapon

A.2 Effects

Effects used in the EFFECT {<effect>} command (see 1.3.3). The descriptions of the effects are the same I used in my machines.

 Table A.2: Effects

absorbma----Absorption Attack

absorbvi----Absorption Spell

antipoison1----Antidote No Sound

antipoison----Antidote

armormag----Light

arrowflame----Flaming Arrow

barrierea----Death Dome A

barriereb----Death Dome B

barrierec----Death Dome C

benedict----Bless

berserke----Beserker

bloodtrace----Bloodtrace

brille----Firefly

bteleport----Teleport B

confusion----Confusion

crystal----Crystal

detection----Detection

dexterity1----DEX Potion

eclaira----Spark Globe

eclairb----Spark

eclairc----Spark Explode

endarrow----End Arrow

endshurin----End Shurinken

etincel----Metal Spark

explode----Explode

farine----Flour

fear----Fear

fee2----Fee2 - Green - No Sound

fee----Fee - White

fireball2a----Fireball Red Smoke 2

fireball2b----Fireball Flash 2

fireball2c----Fireball Explode 2

fireball3a----Fireball Red Smoke 3

fireball3b----Fireball Red Smoke 3

fireball3c----Fireball Explode 3

fireballa----Fireball Red Smoke

fireballb----Fireball Flash

fireballc----Fireball Explode

firecamp----Firecamp

firedraak----Draak's Breath

firewalla----Wall of Fire A

firewallb----Wall of Fire B

firewall----Wall of Fire C

flamewavea----Flamethrower - Sound

flamewaveb----Flamethrower - Little Flame

flamewavec----Flamethrower - Big Flame

flash1----Thunder 1 Purple

flash2----Thunder1 Purple Big

flash3----Thunder 2 Blue

flash4----Thunder 1 Purple 3 Blue

flash5----Thunder 1 Golden 4 Blue

flash----Flash

food----Food

fumee----Smoke

haste----Haste

heal1----Healing

ice----Ice Smoke

inberserker----Berserker Smoke

inferno----Inferno

inflame----Flame Smoke

infravision----Night Vision

invisibl----Invisibility

lenteur----Slowness

loading----Loading

magic1----Mag Potion

magicbomba----Magic Bomb Globe

magicbombb----Magic Bomb Smoke

magicbombc----Magic Bomb Explode

magicmissa----Magic Missile

magicmissb----Magic Missile Flash

magicmissc----Magic Missile Explode

maglight----Magic Light

mana1----Mana

nostone----Stone Explode

nova----Time Orb

oubli----Forgetfulness

plumes----Plumes

poison1----Poison Potion

poisoned----Poisoned

poison----Poison Cloud

poisonweapon----Poison Weapon

rain----Rain

reflection2----Reflection Shield

reflection----Reflection Spell

rejuv1----Youth Potion

resurect----Resurrection

rip----Fear Single

stoncure----Stone Break

strength1----STR Potion

talent1----Skill Learnt

telekinesis----Telekinesis

teleport----Teleport

tempest----Storm

tfirewall----Wall of Fire Yellow Smoke

tmagicbomb----Magic Bomb Yellow Smoke

townportala----Magic Door Open

townportalc----Magic Door Enter

transform1----Mutation Spell

transform2----Mutation Target

vitality1----VIT Potion

water1----Water 1

water2----Water 2

werewolf----Werewolf

 __

A.3 Projecttiles

Projectiles used in the KEY {<type>} field of the EFFECT {<effect>} command (see 1.3.3).

 Table A.3: Projectiles

barriere----Death Dome

dague----Throwing Knife

eclair----Spark

eclair2----Spark2

fireball----Fireball

firewall----Torch

flamewave----Flamethrower

fleche----Arrow

hachette----Throwing Axe

magicbomb----Magic Bomb

magicmiss----Magic Missile

shuriken----Shuriken

 __

